
Hexacon 2022

 @jaakerblom

More Tales from the iOS/macOS
Kernel Trenches

https://twitter.com/jaakerblom

These slides were presented at Hexacon 2022 in
Paris, France. They are meant for a highly
technical audience. Details, clarifications and
elaborations made during the presentation are
not included in the slides. Some links have been
added.

whoami
● Security researcher with a focus on the macOS/iOS kernel

● Publish iOS kernel exploits and other research from time to time (multicast_bytecopy,
multipath_kfree, extra_recipe_extra_bug and others)

● Have been working independently and reporting bugs to Apple this year
(CVE-2022-32821, CVE-2022-32824, CVE-2022-32825, CVE-2022-32828, TBD… (Edit:
CVE-2022-32907, CVE-2022-42803, CVE-2022-46690, CVE-2022-46697))

https://github.com/potmdehex/multicast_bytecopy
https://github.com/potmdehex/multipath_kfree
https://github.com/potmdehex/extra_recipe_extra_bug
https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213342
https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213446
https://support.apple.com/en-us/HT213489
https://support.apple.com/en-us/HT213530
https://support.apple.com/en-us/HT213532

Agenda
● Recent iOS/macOS Vulnerabilities
● Recent Exploitation Primitives and Techniques
● Exploitation
● (Apple Security Bounty in 2022)
● Conclusion

Recent iOS/macOS
Vulnerabilities

More Recent iOS/macOS
Vulnerabilities

● Kernel: CVE-2022-22640

● IOGPU (Kernel Driver): CVE-2022-32821

● (Originally a third vulnerability - removed as not yet patched)

https://support.apple.com/en-us/HT213182
https://support.apple.com/en-us/HT213346

Kernel: CVE-2022-22640
Patched in: iOS 15.4

 First public PoC of CVE-2022-22640 - a @Synacktiv tweet

https://support.apple.com/en-us/HT213182
https://twitter.com/synacktiv/
https://twitter.com/synacktiv/status/1504142757157384198

● CVE-2022-22640 is in xnu - affects both iOS and macOS

● Introduced in iOS 15.0/macOS 12.0

● Patched in iOS 15.4/macOS 12.3

● Reachable from WebContent/Safari

Kernel: CVE-2022-22640

https://support.apple.com/en-us/HT213182

● I found this bug while working on the exploit of another bug

● Marks the third time this happens for me with kmsg bugs
(previously: CVE-2018-4185 and CVE-2020-27950)

● Recently this CVE was covered in a great blog post series by @amarsaar

● The next slide has a diff from his blog, showing the patch of the bug

Kernel: CVE-2022-22640

https://support.apple.com/en-us/HT208693
https://support.apple.com/en-us/HT211929
https://saaramar.github.io/ipc_kmsg_vuln_blogpost/
https://twitter.com/AmarSaar

macOS 12.2 vs macOS 12.3 - saaramar.github.io/ipc_kmsg_vuln_blogpost/

https://saaramar.github.io/ipc_kmsg_vuln_blogpost/

● Saar highlights a new size check, fixing the bug in macOS 12.3 (iOS 15.4)

● It’s not in a particularly deep code path

● This begs the question: Is this size check really new?

● Let’s look at another diff

Kernel: CVE-2022-22640

Kernel: CVE-2022-22640

● This is a diff of macOS 11.5 vs 12.0.1 - what someone diffing Big Sur vs Monterey would see

● Everything in red was removed in macOS 12

● Conclusion: There actually used to be a size check here, Apple removed it in macOS 12 (iOS 15),
introducing this great new bug (thanks)

● What can happen as a result of the missing size check?

● ikm_set_header(kmsg, NULL, size) from the previous slides should set ikm_header to point
to the ipc_last kmsg member, the ikm_inline_data buffer

● Instead, kmsg->ikm_header may end up pointing somewhere else inside the kmsg
structure

Kernel: CVE-2022-22640

Should point inside here ->

<- May end up pointing
somewhere here (or even
before the whole struct)

● Subsequently in the code there is a memcpy that copies a sent message to
kmsg->ikm_header

● If the (unchecked) size of the message is too large, some or all members of the
ipc_kmsg struct will be overwritten by this memcpy

● How much of ipc_kmsg is overwritten will depend on the size of the sent
message

Kernel: CVE-2022-22640

● To reach the code path, we can send exception messages on a timer port

● This is what @Synacktiv's tweet PoC does

Kernel: CVE-2022-22640

https://twitter.com/synacktiv
https://twitter.com/synacktiv/status/1504142757157384198

● With exception messages, we can control the data that is memcpy'd over
ipc_kmsg

● We can set all the registers of a userspace thread and then cause an exception

● The register values of the crashed thread will then be memcpy’d over the kmsg

Kernel: CVE-2022-22640

https://googleprojectzero.blogspot.com/2017/04/exception-oriented-
exploitation-on-ios.html - @i41nbeer

https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://twitter.com/i41nbeer

● The controllable 240 byte register state is big enough to overwrite every single
member of ipc_kmsg

● We overwrite and fully control all members of this struct

Kernel: CVE-2022-22640

Entire struct controlled ->

● Problem: kmsg->ikm_header is dereferenced on the very next line after the
memcpy

● ikm_header is PAC'd so we will immediately panic here - unless we overwrite it
with a correctly signed kernel pointer

Kernel: CVE-2022-22640

● If we had an infoleak we could leak a correctly signed pointer to use

● We could use another bug for that

● Could it also be possible to build the required leak with only this bug?

Kernel: CVE-2022-22640

● It is in fact possible - with some limitations (at least in the flow I’ll describe)

● I've tried to keep explanations simple but the next part requires xnu internals
knowledge to follow along fully - not all terms/concepts are explained

Kernel: CVE-2022-22640

● There are other messages we can send to reach the bug’s code path which
have smaller sizes

● For exception messages, the last two integer arguments passed to
thread_set_exception_ports determine the size of the exception messages sent

● Some combinations of these arguments will lead to messages not overwriting
ikm_header - but still overwriting other ipc_kmsg members

● This will avoid the immediate PAC panic and allow us to return to userspace

Kernel: CVE-2022-22640

Synacktiv used 2, 6 (EXCEPTION_STATE,
ARM_THREAD_STATE64)

● After the memcpy(), there are two other important modifications made to
ipc_kmsg as part of the message sending process

● kmsg->ikm_voucher_type is set to 0x11 (MACH_MSG_TYPE_MOVE_SEND)

● kmsg->ikm_signature is set to a pseudorandom 64-bit value (only 32 bits used -
others set to 0)

Kernel: CVE-2022-22640

● As mentioned, these two modifications happen after the memcpy that copies the message
over ipc_struct

● This means they may end up modifying the overlapping message (i.e modifying msgh_bits,
msgh_size, msgh_remote_port, msgh_local_port, msgh_voucher_port or msgh_id)

Kernel: CVE-2022-22640

<-Overlapping->

● If the msgh_size member was modified, that would be interesting

● In that case, the mach_port_peek() trap could be used to read kernel data OoB
from userspace (msg_trailerp below is returned out to the caller)

● Note: In the Safari sandbox specifically, mach_port_peek() is banned since iOS
14.0 - another leak/technique is needed for that context

Kernel: CVE-2022-22640

● Reminder: by changing thread_set_exception_ports arguments we can send
messages of different sizes

● With a message of exactly size 0x64, we could overlap in such a way that
msgh_size is effectively increased from 0x64 to 0x11000064 when
kmsg->ikm_voucher_type is set to 0x11

Kernel: CVE-2022-22640

● Something interesting could probably be leaked with a msgh_size of
0x11000064

● However, it certainly won't help us in leaking a correctly signed ikm_header

● Even if we had another kmsg allocation 0x11000000 bytes away from the one
we trigger the bug on, we would just be reading the actual trailer of that kmsg

Kernel: CVE-2022-22640

● What about overlapping in such a way that msgh_size is overwritten with
ikm_signature?

● The correct size for this overlap is possible with exception messages

● Namely by supplying flavor 27 (ARM_PAGEIN_STATE) and behavior 3
(EXCEPTION_STATE_IDENTITY) when calling thread_set_exception_ports

Kernel: CVE-2022-22640

● Might not sound like a good idea at first as the signature generated and
overlapped with msgh_size will be a pseudorandom, often very large integer

● Any mach_port_peek() call done when ikm_header + msgh_size/ikm_signature
is unmapped will panic

Kernel: CVE-2022-22640

- Three examples of generated signatures

● What if we had a way to do another leak, this time of the signature, before calling
mach_port_peek()?

● Then we could simply avoid doing the OoB read for any 'bad' size and then trigger the bug
again on another port

● We can repeat this until we get one or several 'good’ (reasonably small) sizes

Kernel: CVE-2022-22640

- Example of a ‘good’ size - only 0x161144 bytes (1.44MB) - a very easy to spray distance

● There is a simple way to do such a leak:
mach_msg() called with option MACH_RCV_LARGE and a rcv_size too small to
receive the message

● This will simply return msgh_size without destroying the message or touching
anything else

Kernel: CVE-2022-22640

send_size is returned to userspace

● Some of the random sizes generated would allow us to leak a signed
ikm_header of another kmsg

● In theory this means we should be able to use mach_port_peek() to leak a
signed ikm_header for surviving the ikm_header dereference

Kernel: CVE-2022-22640

● We'll still have to trigger the bug on a kmsg in the specific location the
ikm_header was leaked from (can’t swap PACs)

● That's not a problem

● We can just trigger the bug on the specific timer port holding the kmsg
at that location

Kernel: CVE-2022-22640

● We are now able to survive the PAC panic problem, and return back to
userspace without panicing after the exception message is sent

● It may sound like we still haven't achieved much

● Bare with me, being able to overwrite an ikm_header with a slightly different
(different offset in ikm_inline_data) but correctly signed ikm_header is in fact
VERY powerful pre-iOS 15.5

Kernel: CVE-2022-22640

● As we can fake message descriptors we’ve essentially achieved a kfree
primitive - the ability to free arbitrary memory in default.kalloc

● This is what the multicast_bytecopy exploit for iOS 15.1.1 that I published earlier
this year does (multicast_bytecopy exploit.c:152)

● However, there is one big last problem that comes in our way with this strategy

Kernel: CVE-2022-22640

https://github.com/potmdehex/multicast_bytecopy/blob/fb744c2d1221b7f797cd790cd988cfcbd00d61eb/multicast_bytecopy/exploit/exploit.c#L152

● When ikm_signature overlaps with msgh_size,
ikm_voucher_type overlaps with the third byte of msgh_remote_port - a ipc_port
pointer

● This means msgh_remote_port's third byte will always be replaced by 0x11

Kernel: CVE-2022-22640

● msgh_remote_port is dereferenced in multiple places in the code afterwards

● This means that we need to have memory mapped at the resulting new
msgh_remote_port pointer after its third byte is replaced with 0x11

● The zone_require mitigation also means we specifically need to have a port at
this location, not an object from any other zone

Kernel: CVE-2022-22640

● For this we may need yet another leak (whew), this time of a ipc_port pointer

● ipc_port pointer leaks have historically been relatively common so it’s not
unlikely attackers would already be sitting on at least one ipc_port leak bug

● But we could also just build one out of mach_port_peek() - kmsgs can contain
ipc_port pointers of sent ports so we could leak one from a kmsg

Kernel: CVE-2022-22640

● As for why we would need an ipc_port leak:
It could assist us in making sure we spray ports in the correct location (covering
0xffffffe111000000 in the previous example)

● Some ports would be allocated and leaked, then other objects would be
allocated as a padding spray to inch further towards 0xffffffe111000000 (with
pages allocated consecutively)

● This would be repeated until 0xffffffe111000000 would be covered with ports,
allowing msgh_remote_port to be dereferenced safely

Kernel: CVE-2022-22640

● We may need to spray a lot - is memory usage a problem here? (jetsam)

● No - padding of different types can be allocated and deallocated as we go,
avoiding high memory usage issues

● This is because padding of any specific object type will reserve memory not
reusable by other types even after their deallocation

● Apple’s zone separation mitigations are leveraged against them when spraying
padding objects - we’d run out of memory on earlier versions

Kernel: CVE-2022-22640

● Finally about this strategy, iOS 15.2 added more memory randomization making
it trickier - the same basic technique works but there could be other better ways
to exploit this bug on 15.2+

Kernel: CVE-2022-22640

● The most important parts of exploiting this bug (up to arbitrary kfree) have been
covered :)

● The rest of the exploitation for kernel R/W is relatively easy and will be briefly
covered towards the end of this talk

Kernel: CVE-2022-22640

IOGPU (Kernel Driver):
CVE-2022-32821

Patched in: iOS 15.6

IOGPU: CVE-2022-32821
● CVE-2022-32821 is in IOGPU - affects iOS and macOS (Apple Silicon only)

● Introduced in iOS 15.0/macOS 12.0

● Patched in iOS 15.6/macOS 12.5

● Reachable from app context, filtered by Safari sandbox

https://support.apple.com/en-us/HT213346

IOGPU: CVE-2022-32821
● Very easy to trigger (minimal PoC on next slide)

● I’ll keep an iOS 15.1.1 perspective in the slides - that’s the version I exploited
(latest version at the time of writing the exploit)

● Will focus on simple exploitation without much root cause analysis for this bug

● This bug was also found when working on the exploit of another bug

IOGPU: CVE-2022-32821

● A PoC causing a panic in an IOKit driver isn’t notable by itself

● IOKit drivers often have many low hanging typically unexploitable bugs (such as
NULL dereferences)

● However, in this case it turns out that the panic is actually quite interesting

IOGPU: CVE-2022-32821

● A data abort on what looks like a mappable kernel pointer - promising

● ‘far:’ (abort) location starts with 0xffffffe3 - instantly recognizable as a kalloc
pointer (on iOS 15.0 - 15.1.1) - even more promising

IOGPU: CVE-2022-32821

IOGPU: CVE-2022-32821

 Crashing PC in AGXFirmware::requestLateEvalEventSignalMem - described in following slides

● What’s happening here?

● Earlier, an array is allocated in default/kext.kalloc.576

● An OoB access reading at +0xfffff8 (X27) bytes (14MB/1024 pages) out of
bounds from the array (X8) then occurs (panic PC)

IOGPU: CVE-2022-32821

● If we can map the pointer where the data abort happens we could gain several
interesting primitives (call primitives and increment primitive)

● It’s easy to map the pointer - spraying 14MB to cover +0xfffff8 is not a problem
in default.kalloc

● With a controlled spray in default.kalloc we should be able to control the location
at which the OoB access happens

IOGPU: CVE-2022-32821

● Unfortunately, not many kext/default sprays left in iOS 15

● However, at least for iOS 15.1.1 there was still the necp_client_add() spray
(subsequently moved to data.kalloc in iOS 15.2)

● Drawback: not fully controlled (may OoB read in the non-controlled part) - still
good enough for a simple kernel R/W PoC without reliability requirements

IOGPU: CVE-2022-32821

● Is a call primitive (PC control) interesting?

● Yes, but only for non-PAC devices and only if we have a separate KASLR leak
to know what (where) to call

● The increment primitive seems more interesting - useful without a separate leak

● Let’s look at it more closely

IOGPU: CVE-2022-32821

● With our controlled spray, we control the expression *(*(a1 + 0xBD8) + v18)

● This means that the increment (++*v20) will happen at any target of our choice

● Additionally, at +0x10 inline of our target, an object pointer (v19/v20) will be read

● Two C++ calls will be done with this object pointer

IOGPU: CVE-2022-32821

● We have to survive both of the C++ calls on the object pointer without crashing

● Let’s look at those calls again, with descriptions of what they are

IOGPU: CVE-2022-32821

● The first is a retain() call

● We’ll survive this (even on PAC devices) if we point v19/v20 to any class
inheriting from OSObject - almost any C++ object in the kernel

IOGPU: CVE-2022-32821

● The second is a IOGPUMemoryMap::getGPUVirtualAddress() call

● On non-PAC devices we need to point to any C++ object that doesn’t crash
when we call the function at <its vtable+0x90>

● For PAC devices we’ll survive only if we point specifically to a
IOGPUMemoryMap family object - otherwise we get a PAC panic here

IOGPU: CVE-2022-32821

● For the first call, we can hardcode an address that we’ll always hit on 15.1 given
a sufficiently large spray of C++ objects

● For the second call, on non-PAC we can do the same - we just need objects
with a <vtable+0x90> function that doesn’t crash

● On PAC devices we would need a leak of an IOGPUMemoryMap family object

IOGPU: CVE-2022-32821

● At this point we have an arbitrary increment primitive - with constraints

● I’ll explain the rest of the exploitation for kernel R/W after a short recap
of generic techniques

IOGPU: CVE-2022-32821

Recent Exploitation
Primitives and Techniques

● Generic exploitation techniques for iOS 15 (up to 15.1.1) were covered at length
in my Zer0con talk Tales from the macOS/iOS Kernel Trenches

● I’ll be doing just a very brief recap of what each technique was here

● For anyone interested in more details, I recommend reading the full slides for
the Zer0Con talk (or looking at multicast_bytecopy on Github)

Recent (Generic) Exploitation
Primitives and Techniques

https://github.com/potmdehex/slides/blob/main/Zer0Con_2022_Tales_from_the_iOS_macOS_Kernel_Trenches.pdf
https://github.com/potmdehex/multicast_bytecopy

● Kernel R/W (“final”) primitives: IOSurface methods
(works up to 15.2.1)

● Intermediary: kmsg kfree primitive
(works up to 15.4.1)

● Other: hardcoding kernel memory addresses
(works up to 15.1.1)

Recent (Generic) Exploitation
Primitives and Techniques

Zer0Con mitigations slides

Exploitation

Exploitation: CVE-2022-32821
● There’s a common excellent target for the increment primitive - it’s kmsg (to no

one’s surprise)

● We can increment the descriptor count of a message with a count of 0 to a
count of 1

● The count is followed by a controlled fake descriptor (descriptors are 0x10
bytes, conveniently) and then a controlled C++ object pointer

 count | fake descriptor containing default.kalloc pointer | C++ object pointer |

Exploitation: CVE-2022-32821
● The default.kalloc pointer in the fake descriptor will be kfree’d if count is

incremented to 1 while the kmsg is on the kernel heap

● We can use a hardcoded default.kalloc pointer to kfree (on 15.1.1),
e.g 0xFFFFFFE376000000 (actual pointer we can use)

● Freeing an IOSurfaceClient array, and refilling it with controlled/semi-controlled
data achieves kernel R/W (see multicast_bytecopy exploit.c:192)

https://github.com/potmdehex/multicast_bytecopy/blob/fb744c2d1221b7f797cd790cd988cfcbd00d61eb/multicast_bytecopy/exploit/exploit.c#L193

Exploitation: CVE-2022-32821
● The main part of my PoC is shown on next slide

● The point of showing the PoC is just to show the main heap layout is simple
enough to fit on a single slide

● The PoC is for non-PAC, with IORegistryIterator used as the C++ object to
survive the <vtable+0x90> call

● For PAC, a separate leak of an IOGPUMemoryMap could be plugged into the
PoC instead of IORegistryIterator and it would work

Exploitation: CVE-2022-22640
● For the kmsg bug shown in this presentation, CVE-2022-22640, there’s not

much left to say

● We already achieved a kmsg kfree primitive - we can replace
kmsg->ikm_header and kfree default.kalloc pointers in fake descriptors

● Freeing an IOSurfaceClient array, and refilling it with controlled/semi-controlled
data achieves kernel R/W (as mentioned before)

● There’s other interesting ways to exploit this bug - I only covered one

● Final slide has some details about how to use the strategy on different versions

https://support.apple.com/en-us/HT213182

Exploitation: CVE-2022-22640
● iOS 15.0 - 15.1.1: generic multicast_bytecopy-style exploitation with hardcoded

default.kalloc pointers (as in multicast_bytecopy exploit.c:23)

● iOS 15.2 - 15.2.1: use mach_port_peek() to also leak default.kalloc pointers
from kmsgs instead of hardcoding anything

● iOS 15.3 - 15.3.1 : same as 15.2 but something other than IOSurface needed as
‘final’ primitives

https://github.com/potmdehex/multicast_bytecopy/blob/fb744c2d1221b7f797cd790cd988cfcbd00d61eb/multicast_bytecopy/exploit/exploit.c#L23

(Apple Security Bounty in 2022)

(Apple Security Bounty in 2022)

(Apple Security Bounty in 2022)
● I've talked a lot about leaks in this presentation

● They’re clearly useful

● However, Apple doesn't pay even their minimum bounty for kernel infoleaks
unless combined with other bugs

● I’d like to end with this question to Apple: What was the purpose of all those new
mitigations if bypassing them is worth nothing?

Conclusion

● New “good” bugs are still being introduced in iOS - the ones in this talk were
new in iOS 15 and not patched until a few months ago

● When engaged in full time security research, new bugs/techniques/attack
surfaces often come to you as you go while working on something else

● Apple Security Bounty could use further improvements

● kmsg will forever be remembered as an iOS exploit SDK

● Finally, I’m at Dataflow Forensics, a new company founded in collaboration with
Dataflow Security - we are hiring! (reach me on twitter - @jaakerblom)

Conclusion

https://df-f.com
https://twitter.com/jaakerblom

Thanks to
● Phạm Hồng Phi (@4nhdaden)
● 안기찬 (@externalist)
● 王铁磊 (@wangtielei)
● (@amarsaar) סער עמר
● Jonathan Levin (@Morpheus______)
● Ian Beer (@i41nbeer)
● turbocooler
● Hexacon organizers

https://twitter.com/4nhdaden
https://twitter.com/externalist
https://twitter.com/wangtielei
https://twitter.com/amarsaar
https://twitter.com/Morpheus______
https://twitter.com/i41nbeer

