
1

Attacking Safari in 2022

2 / 39

22Who am I?

 Quentin Meffre (@0xdagger)
 Security researcher at Synacktiv
 Vulnerability research & Exploitation

 Synacktiv
 Offensive security company
 +100 ninjas
 We are hiring!

3 / 39

33Introduction

 Full chain on iPhone using the browser as entry point

4 / 39

44Introduction

 Steps to compromise Safari on the iPhone
 addrOf/fakeObj
 Arbitrary R/W
 Bypass PAC/APRR
 Overwrite JIT page code
 Arbitrary code execution!

 Apple hardened each step of a Safari exploit...

5 / 39

55History of Safari mitigations

 ézzézé

6 / 39

66SEPARATED_WX_HEAP

 The JIT page is mapped
twice
 One has protections RX
 Second has protections RW

 A function is jitted to copy
data in the JIT page
 The function is on a page

with X only protection
 The address of the RW JIT

page is inlined in this
function

 ézzézé

7 / 39

77SEPARATED_WX_HEAP

 Public bypass still works with this mitigation¹
 Build an arbitrary call primitive

 ROP/JOP
 Call the jitWriteSeparateHeaps function
 Write arbitrary code in the JIT page
 Profit!

1: https://www.sstic.org/media/SSTIC2019/SSTIC-actes/WEN_ETA_JB/SSTIC2019-Article-WEN_ETA_JB-benoist-vanderbeken_perigaud.pdf

 ézzézé

8 / 39

88APRR

 Hardware mitigation
 SEPARATED_WX_HEAP is replaced by APRR on supported

hardware
 Atomically switches the JIT page protections using a System

Register
 RX → RW → RX

 ézzézé

9 / 39

99APRR

 Hard jump in the middle of the
function¹
 The System Register value comes

from a R only page shared with the
kernel

 The system register value and the
value from the R only page are
compared

 Difference → crash
 Without CFI can be bypassed like

SEPARATED_WX_HEAP
1: https://github.com/phoenhex/files/blob/master/exploits/ios-11.3.1/pwn_i8.js

10 / 39

1010GigaCage

 TypedArray are JavaScript objects
 Often used to build arbitrary R/W

 TypedArray are allocated in a 32GB zone
 Followed by another 32G zone allocated with PROT_NONE

 The data buffer is now an offset to the cage and no more an
address

 Cannot R/W outside of the cage anymore…

11 / 39

1111GigaCage bypass

 Many public documentation about the GigaCage¹
 Some public bypasses still work...

 One known bypass is to use other objects
 More on this later in this presentation

 GigaCage is not enabled anymore on latest iOS versions
 But attackers still can’t use TypedArray to build arbitrary R/W...

1: https://googleprojectzero.blogspot.com/2020/09/jitsploitation-two.html

 ézzézé

12 / 39

1212StructureID randomization

 JSObject inherits from the JSCell object

 The StructureID is an index
 Used to get the Structure of a JSObject

 Invalid StructureID → crash
 Before randomization the StructureID was incremental

 Easy to guess a valid StructureID
 Build fake objects without crashing

 ézzézé

13 / 39

1313After StructureID randomization

 Randomization is added to the StructureID

 Signature is checked every time a JSObject property is
accessed...
 … but sometimes it is not!¹
 Leads to StructureID randomization bypass

 StructureID randomization has been removed
 StructureID uses low 32 bits of Structure address

1: https://i.blackhat.com/eu-19/Thursday/eu-19-Wang-Thinking-Outside-The-JIT-Compiler-Understanding-And-Bypassing-StructureID-
Randomization-With-Generic-And-Old-School-Methods.pdf

 ézzézé

14 / 39

1414PAC

 Pointer Authentication Code
 Hardware mitigation
 Introduced in ARMv8.3-A
 Prevents an attacker from corrupting sensitive pointers

 Signature is added to some pointers
 Corrupting a pointer without signing it correctly often leads to a

crash

 ézzézé

15 / 39

1515PAC

 New ARM instructions used in Safari
 PAC*: Add signature to a pointer
 AUT*: Check and remove signature from a pointer
 XPAC*: Remove signature from a pointer
 RETA*: Check X30 with context SP and return to X30 if the signature

is correct
 BRA* / BLRA*: Check signature and branch

 ézzézé

16 / 39

1616PAC

 Two kinds of pointers can be signed
 Data
 Instruction

 Two keys can be used for each kind
 Key A
 Key B

 A context is often used to avoid pointer substitution
 A pointer can also be signed with a null context...

 ézzézé

17 / 39

1717PAC

 The signature is stored in the top bits of a pointer
 The signature length depends on the key/pointer kind

 16 bits
 24 bits

 ézzézé

18 / 39

1818PAC

 Instruction pointers
 VTable function pointer => PACIA
 Return value stored on the stack => PACIB
 JIT Code pointer => PACIB

 Data pointers
 VTable pointer => PACDA
 Sensitive data pointer (TypedArray data pointer...) => PACDB
 JIT instructions => PACDB

 ézzézé

19 / 39

1919PAC

 What is not signed in Safari?

 ézzézé

20 / 39

2020PAC bypass

 Bypassing PAC is a security issue in itself
 Apple takes PAC bypasses very seriously

 Many PAC bypasses have been disclosed since PAC introduction
 Apple fixes each of them

 Hardware improvement
 Software improvement

 ézzézé

21 / 39

2121PAC bypass: design issue

 If a pointer authentication fails
 Signature is removed and one of the top bits is flipped
 Does not raise an exception

 If the pointer is signed again after the failed AUT*
 Correct signature is added, with a flipped bit
 PAC bypass: flip the bit again to get the correct signature

 EnhancedPAC is implemented first on A14 SoC
 Signing invalid pointers will discard the signature
 Can’t leak the signature anymore...

 ézzézé

22 / 39

2222PAC bypass: bruteforce

 The signature can still be bruteforced...
 ...but Apple killed this bypass again
 The compiler option -fptrauth-auth-traps is used

 Adds a check after all AUT* instructions
 If the signature given to the AUT* instruction is invalid → ABORT

 ézzézé

23 / 39

2323PAC bypass: bruteforce

 Apple added a new feature in the A15 SoC
 ARMv8.6-A FPAC extension
 If an AUT* instruction fails, an exception is now raised

 Apple killed this exploitation method with this feature

 ézzézé

24 / 39

2424PAC bypass: null context chained

 Initially, many pointers were signed with a null context
 A potential bypass could be to use null signed pointers in a JOP

chain
 Build powerful primitives

 Never seen publicly
 Since iOS 15 this attack has been almost killed

 Very few pointers are still signed with a null context

 ézzézé

25 / 39

2525PAC bypass

 More bypasses¹
 Unprotected code pointers
 Race condition with the JIT thread
 Blocking the JIT thread while copying data on the JIT page
 Signal handlers corruption

 All of these bypasses have been fixed

1: https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

 ézzézé

26 / 39

2626PAC R/W

 PAC doesn’t sign a lot of sensitive data
pointers

 Some object can be wrapped into a JSObject
 DOMRect

 Contains 4 doubles
 Has methods to read and write these doubles

 Faking a wrapper to a DOMRect object
 Arbitrary R/W

 Method used by a public exploit¹

1: https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/

 ézzézé

27 / 39

2727PAC kill R/W method

 Method killed by iOS 15.4
 Some wrappers to sensitive wrapped objects are now signed

 Most of them manipulate floats/doubles
 Killed many arbitrary R/W methods

 ézzézé

28 / 39

2828JIT Code signature

 The JIT compilation can be done in another thread
 The assembly code is stored in a temporary buffer while doing

compilation
 The temporary buffer content is copied in the JIT page at the end of

the compilation
 Before JIT code signature

 Race the JIT thread to put arbitrary code in the temporary buffer
 Profit!
 But…

 ézzézé

29 / 39

2929JIT Code signature

 Apple introduced the JIT code signature
 Stop attackers from overwriting the JIT code buffer

 Software mitigation based on PAC
 Instructions stored in the temporary buffer are signed

 Each instruction signature generates a hash stored in the hash buffer
 Signed with previous hash and PACDB

 Signature is checked when the temporary buffer is copied in the
JIT page
 If the signature is invalid → Crash

 ézzézé

30 / 39

3030JIT Code signature PIN

 The hash used to sign the
next instruction was not
protected

 It is now signed with a
unique identifier (PIN)
 Each JIT compilation uses a

different PIN
 PIN informations are stored

in the JIT page
 An attacker can’t modify

them

 ézzézé

31 / 39

3131JITCage

 The A15 SoC brings a new complex mitigation
 The JITCage!

 The JITCage stops attackers from calling arbitrary functions
from the JIT page

 The JIT page is now mapped with a new flag
 MAP_JITCAGE?

 The XNU open-source project doesn’t have references about
this flag…

 ézzézé

32 / 39

3232JITCage

 ...but the KernelCache has references!

 ézzézé

33 / 39

3333JITCage

 The kernel sets new System Registers using
 The size of the JIT page
 The address of the JIT page
 Some unknown flags

 The KernelCache has no other information
 The interesting part of the JITCage is implemented in the A15

SoC

 ézzézé

34 / 39

3434JITCage

 The following instructions can’t be executed in the JITCage
 RET
 BR/BLR/BL
 SVC
 MRS/MSR

 If one tries to execute these instructions in the JITCage
 The processor raises an EXC_BAD_INSTRUCTION exception

 ézzézé

35 / 39

3535JITCage

 The PAC IA/IB keys are different in the JITCage
 Can’t sign instruction pointers in the JITCage

 PACIA doesn’t add signature if executed in the JITCage
 PACIB can only sign pointer that points into the JITCage
 PACD* seems unaffected by the JITCage

 ézzézé

36 / 39

3636JITCage

 The JIT code has to call functions outside of the JITCage
 Setting a System Register allows changing IA key

 Instruction pointers used by the JITCage are signed with the IA key
 Only done once when the JavaScript engine is initialized
 Can’t be done anymore after

 An attacker can’t easily call functions outside of the JITCage

 ézzézé

37 / 39

3737Conclusion 1/2

 Getting arbitrary code on latest iPhone involves finding:
 A vulnerability
 A new method to build arbitrary R/W
 A PAC bypass
 An APRR bypass
 A JITCage bypass

 One solution for attackers could be to implement the next stage
using JavaScript only...

 ézzézé

38 / 39

3838Conclusion 2/2

 2022 in short
 Yet another mitigation
 Yet other exploitation methods killed

 What to expect in the next years?
 Same as above?

 Maybe it’s time for attackers to find another entry point than
the browser…
 ...or maybe not? :-)
 JavaScript is a powerful engine to attack all those mitigations

39

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

