
Cinema time!
Andrey Labunets
Nikita Tarakanov

Hexacon
15th of October 2022

Paris, France

#WhoWeAre
• Nikita Tarakanov is an independent security researcher. He has

worked as a security researcher in Positive Technologies, Vupen
Security, Intel corporation and Huawei. He likes writing exploits,
especially for OS kernels. He won the PHDays Hack2Own contest
in 2011 and 2012. He has published a few papers about kernel
mode drivers and their exploitation. He is currently engaged in
reverse engineering research and vulnerability search automation.

• Andrey Labunets is a security researcher with more than a decade

of experience in vulnerability research and reverse engineering.

Agenda
• Video decoding subsystem overview

• AppleAVD internals

• AppleAVD attack surface

• Fuzzing approach and code analysis

• Results

• Previously disclosed vulnerabilities and exploitation

• Discussion

• Q&A

Video decoding subsystem overview

Video decoding subsystem
macOS Monterey (M1)

AppleAVD kext

AppleVideoDecoder
VTDecoderXPCService

usermode

kernel

Video decoding subsystem

• Out of scope today - hardware components

• Main focus is AppleAVD kext internals on

 macOS Monterey

• You can find some info on AVD hardware here:

• https://twitter.com/rqou_/status/1577967077955993600

• https://github.com/rqou/m1-avd-reverse-engineering/blob/main/avd_emu.py

https://twitter.com/rqou_/status/1577967077955993600
https://github.com/rqou/m1-avd-reverse-engineering/blob/main/avd_emu.py

AppleAVD internals

AppleAVD internals
Codebase overview

• AppleAVD - one of the largest kexts in
macOS

• ~120 KLOC in IDA decompiler

• Large part of this codebase are actual
decoders, which process parts of
media input in kernel space

AppleAVD internals
Codebase overview

• AppleAVD - one of the largest kexts in
macOS

• ~120 KLOC in IDA decompiler

• Large part of this codebase are actual
decoders, which process parts of
media input in kernel space

AppleAVD internals
Entry points (external methods)

• Accessed through AppleAVDUserClient

• Most interesting external methods:

• AppleAVDUserClient::createDecoder

• AppleAVDUserClient::decodeFrameFig

• Data transfer between user / kernel.
(media data, NAL units, etc)

• IOSurface

AppleAVD internals
Entry points (external methods)

• This set of external methods covers most of the kext functionality:

• AppleAVDUserClient::setCallback

• AppleAVDUserClient::createDecoder

• AppleAVDUserClient::setCryptSession

• AppleAVDUserClient::decodeFrameFig

AppleAVD internals
createDecoder

• Sets up one of 3 decoders of our choice

AppleAVD internals
decodeFrameFig

• Processes plaintext frames…

AppleAVD internals
decodeFrameFig -> decodeFrameFigHelper_DecryptFrame

• Processes plaintext frames…

• …and DRM content

• Likely it’s FairPlay Streaming

• FairPlay code obfuscation
complicates some analysis

AppleAVD internals
setCryptSession

• Allocates data buffers for
(decrypted?) data, initializes
(session?) parameters

• From AppleVideoDecoder:

AppleAVD attack surface

AppleAVD attack surface

• In the past, vulnerabilities in AppleAVD have been both found by researchers and exploited in-
the-wild:

• CVE-2022-22675 - in-the-wild

• https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-22675.html

• CVE-2022-22674 - in-the-wild

• CVE-2018-4384

• https://bugs.chromium.org/p/project-zero/issues/detail?id=1641

• Which AppleAVD attack vectors are most likely to be actively exploited?

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2022/CVE-2022-22675.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1641

AppleAVD attack surface

• AppleAVD media processing is performed with decoders, wrapped in AppleAVD logic:

• AppleAVD logic is AppleAVDUserClient, AppleAVD, and other kext classes

• Decoders and AppleAVD logic are mostly independent of each other

• This is a very simplified way to approach kext’s large codebase

• Decoders might be easier to attack remotely

• Attacking AppleAVD logic might require more control over AppleAVD objects,
achieved, for example, with specific external method arguments in local privilege
escalation (LPE) scenarios

AppleAVD attack surface

• To explore the most straightforward remote attack vectors, we extracted
decoders from the kext, rebuilt them, and tested directly with a coverage-
guided fuzzer

• To investigate the outer AppleAVD logic, we reconstructed the logic of
external methods and manually reviewed object initialization, memory
operations, and interaction between components

• We left all possible firmware and hardware vectors out of scope

Fuzzing approach and code analysis

Fuzzing decoders

• AppleAVD decoders process media data, such as Network Abstraction Layer
(NAL) units, parameter sets (SPS, PPS)

• This code is implemented in CAVDAvcDecoder, CAVDLghDecoder,
CAVDHevcDecoder

• Parsing is done inside virtual VAStartDecode and VADecodeFrame

Fuzzing decoders
Seed corpus generation

• First, we fuzzed ffmpeg with a small set of publicly available templates

• ffmpeg fuzzer generated a sufficiently large seed corpus for AppleAVD

• AppleAVD expects NAL units in a slightly different format, so we
preprocessed the resulting seed corpus for AppleAVD

Fuzzing decoders
Target code setup and fuzzing

• We built the target from a pseudocode extracted from IDA decompiler

• In our experiments with AppleAVD and other macOS subsystems, the
control flow does not differ from the original machine code control flow

• We wrote a tiny interface to handle IDA types, ARM intrinsics, and
reimplement selected parts of macOS library code

• Results: fuzzing ~3KLOC of CAVDAVCDecoder+AVC_RBSP with AFL++
resulted in a single unexploitable crash (an artifact of fuzzing setup) and 96%
coverage

Fuzzing decoders
Road not taken - alternative fuzzing setup

• Another approach by Junzhi Lu, Xindi
Wang, Ju Zhuto* runs kexts in user
mode with a custom macho loader for
debugging, but could be useful for
fuzzing too.

• Our approach with code extraction
gives source code-level flexibility to
fuzz selected code paths with debug
symbols.

*https://github.com/pwn0rz/fairplay_research

https://github.com/pwn0rz/fairplay_research

Manual analysis

• Analysis of 3 external methods
revealed an issue with inconsistent
checks:

• CVE-2022-46694 fixed in iOS 16.2
and iPadOS 16.2

• https://support.apple.com/en-us/
HT213530

https://support.apple.com/en-us/HT213530
https://support.apple.com/en-us/HT213530

AppleAVD analysis: results

• Fuzzed one of three decoders - 1 non-exploitable crash (fuzzing setup at fault), not
an issue

• Reviewed control flow and interaction between 3 external methods - 1 finding
(CVE-2022-46694)

• Limited results suggest AppleAVD logic (vs.decoders) is more error-prone

• AppleAVD can still be exploited via relatively simple memory corruption bugs

• A subset of decoder bugs leading to subtle conditions and data-only attacks was left
out of scope, but it is an interesting future direction to explore

Previously discovered vulnerabilities

• CVE-2018-4348 - memory corruption

• CVE-2020-9958 - out-of-bound write

• CVE-2022-22675 - overflow in parseHRD

• CVE-2022-32788 - overflow in parseSliceHeader

Previously disclosed vulnerabilities and
exploitation

Overflow in parseHRD

• cpb_cnt_minus1 = Read_byte_from_stream();

• *HRD_data_in_spsList = cpb_cnt_minus1;

• HRD_arrays = HRD_data_in_spsList + 0x104;

• Index = 0

• do {

• *(_DWORD *)&HRD_arrays[4 * index - 0x100] = Read_dword_from_stream();

• *(_DWORD *)&HRD_arrays[4 * index - 0x80] = Read_dword_from_stream();

• HRD_arrays[index] = = Read_byte_from_stream();

• } while (index++ < *HRD_data_in_spsList);

Overflow in parseHRD

• Size of array is 0x20 elements we can copy up-to 0x100 elements

• We can overflow adjacent element in spsList array

• We can overflow adjacent memory to spsList array (first element in ppsList)

Overflow in parseSliceHeaders

• counter_oob = 0;

• while (1){

• *((_BYTE *)SliceHeaderBuffer + counter_oob + 47) = Read_byte_from_stream();

• *((_DWORD *)SliceHeaderBuffer + counter_oob + 55) = Read_dword_from_stream();

• *((_DWORD *)SliceHeaderBuffer + counter_oob + 21) = Read_dword_from_stream();

• counter_oob++;

• If (*((_BYTE *)SliceHeaderBuffer + counter_oob + 47) == 0x3) {

• break;

• }

• }

Overflow in parseSliceHeader

• Size of SliceHeader buffer is 0x480 located in CAVDAvcDecoder object

• We can overflow adjacent fields in CAVDAvcDecoder object

• CAVDAvcDecoder object is huge (0x8642B0 byes) in KHEAP_KEXT

• We can spray CAVDAvcDecoder objects and smash pointers in it

• Problem is that we have to win race between using vtable (PAC) and pointers
to other objects

Discussion

Discussion

• AppleAVD runs about ~100KLOC of parsers in kernel on all
incoming media.

• Can this functionality be moved to user land instead or isolated?

• Some input validation is spread across multiple external methods,
processing is partially performed by an obfuscated FairplayIOKit.

• Can we even inspect the security of Apple media pipeline in any

meaningful way?

• Thanks to Max Dmitriev (I_Greek) and Berk Cem Göksel (@berkcgoksel)!

• Questions?

Discussion

